References and Notes
<A NAME="RD34409ST-1A">1a</A>
Shin J.
Seo Y.
Cho KW.
Rho J.-R.
Sim CJ.
J. Nat. Prod.
1997,
60:
611
<A NAME="RD34409ST-1B">1b</A>
Saporito RA.
Garraffo
HM.
Donnelly MA.
Edwards AL.
Longino JT.
Daly JW.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
8045
<A NAME="RD34409ST-1C">1c</A>
Daly JW.
McNeal E.
Gusovsky F.
Ito F.
Overman LE.
J. Med. Chem.
1988,
31:
477
<A NAME="RD34409ST-1D">1d</A>
Asano N.
Nash
RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1645
<A NAME="RD34409ST-1E">1e</A>
Karpas A.
Fleet GWJ.
Dwek RA.
Petursson S.
Namgoong SK.
Ramsden
NG.
Jacob GS.
Rademacher TW.
Proc. Natl. Acad. Sci. U.S.A.
1988,
85:
9229
<A NAME="RD34409ST-1F">1f</A>
Goss PE.
Baptiste J.
Fernandes B.
Baker M.
Dennis JW.
Cancer Res.
1994,
54:
1450
<A NAME="RD34409ST-2">2</A>
Holmes AB.
Smith AL.
Williams SF.
J. Org. Chem.
1991,
56:
1393
<A NAME="RD34409ST-3A">3a</A>
Pilli RA.
Zanotto PR.
Böckelmann MA.
Tetrahedron
Lett.
2001,
42:
7003
<A NAME="RD34409ST-3B">3b</A>
Yamazaki N.
Dokoshi W.
Kibayashi C.
Org.
Lett.
2001,
3:
193
<A NAME="RD34409ST-4">4</A>
Lindsay KB.
Pyne SG.
J. Org. Chem.
2002,
67:
7774
<A NAME="RD34409ST-5">5</A>
O’Brien P.
Porter DW.
Smith NM.
Synlett
2000,
1336
<A NAME="RD34409ST-6">6</A> For a review, see:
Davies SG.
Smith AD.
Price PD.
Tetrahedron: Asymmetry
2005,
16:
2833
<A NAME="RD34409ST-7A">7a</A>
Davies SG.
Kelly RJ.
Price-Mortimer AJ.
Chem. Commun.
2003,
2132
<A NAME="RD34409ST-7B">7b</A>
Davies SG.
Burke AJ.
Garner AC.
McCarthy TD.
Roberts PM.
Smith AD.
Rodriguez-Solla H.
Vickers RJ.
Org. Biomol. Chem.
2004,
2:
1387
<A NAME="RD34409ST-7C">7c</A>
Davies SG.
Haggitt JR.
Ichihara O.
Kelly RJ.
Leech MA.
Price Mortimer AJ.
Roberts
PM.
Smith AD.
Org. Biomol. Chem.
2004,
2:
2630
<A NAME="RD34409ST-7D">7d</A>
Abraham E.
Candela-Lena JI.
Davies SG.
Georgiou M.
Nicholson RL.
Roberts PM.
Russell AJ.
Sánchez-Fernández EM.
Smith AD.
Thomson JE.
Tetrahedron: Asymmetry
2007,
18:
2510
<A NAME="RD34409ST-7E">7e</A>
Abraham E.
Davies SG.
Millican NL.
Nicholson RL.
Roberts
PM.
Smith AD.
Org.
Biomol. Chem.
2008,
6:
1655
<A NAME="RD34409ST-7F">7f</A>
Abraham E.
Brock EA.
Candela-Lena JI.
Davies SG.
Georgiou M.
Nicholson RL.
Perkins JH.
Roberts PM.
Russell AJ.
Sánchez-Fernández EM.
Scott PM.
Smith AD.
Thomson JE.
Org. Biomol. Chem.
2008,
6:
1665
<A NAME="RD34409ST-7G">7g</A>
Davies SG.
Fletcher AM.
Roberts PM.
Smith AD.
Tetrahedron
2009,
65:
10192
<A NAME="RD34409ST-8A">8a</A>
Davies SG.
Nicholson RL.
Price PD.
Roberts
PM.
Smith AD.
Synlett
2004,
901
<A NAME="RD34409ST-8B">8b</A>
Davies SG.
Nicholson RL.
Price PD.
Roberts PM.
Savory ED.
Smith AD.
Thomson JE.
Tetrahedron:
Asymmetry
2009,
20:
756
<A NAME="RD34409ST-9">9</A>
Davies SG.
Díez D.
Dominguez SH.
Garrido NM.
Kruchinin D.
Price PD.
Smith AD.
Org. Biomol. Chem.
2005,
3:
1284
<A NAME="RD34409ST-10">10</A>
ξ-Hydroxy-α,β-unsaturated
ester 13 was prepared in
55% yield [96:4 E/Z ratio] via
the one-pot treatment of
δ-valerolactone with
DIBAL-H, tert-butyl 2-(diethoxy-phosphoryl)acetate
and BuLi at -78 ˚C. See ref. 9 for details.
<A NAME="RD34409ST-11A">11a</A>
Enders D.
Wiedemann J.
Liebigs
Ann.
1997,
4:
699
<A NAME="RD34409ST-11B">11b</A>
Molander GA.
Harris CR.
J.
Org. Chem.
1997,
62:
7418
<A NAME="RD34409ST-11C">11c</A>
Li N.
Piccirilli JA.
J. Org. Chem.
2004,
69:
4751
<A NAME="RD34409ST-12">12</A>
Holmes AB.
Smith AL.
Williams SF.
J. Org. Chem.
1991,
56:
1393
<A NAME="RD34409ST-13">13</A>
For a related example, see ref. 11a.
<A NAME="RD34409ST-14">14</A> β-Amino aldehydes are known
to be unstable with respect to retro-Michael reactions; see:
Carruthers W.
Moses RC.
J.
Chem. Soc., Perkin Trans. 1
1988,
2251
<A NAME="RD34409ST-15">15</A>
Data for (
S
)-Coniine Hydrochloride
(34˙HCl)
Mp 208 ˚C (lit.¹6 mp
214 ˚C); [α]D
²³ +9.2
(c 0.33 in EtOH) {lit.¹6 [α]D
²³ +9.4
(c 0.3 in EtOH)}. ¹H
NMR (400 MHz, CDCl3): δ = 0.94 [3
H, t, J = 7.3 Hz, C(3′)H
3], 1.36-2.04 [10 H,
m, C(3)H
2, C(4)H
2, C(5)H
2,
C(1′)H
2, C(2′)H
2], 2.75-2.86 [1
H, m, C(6)H
A], 2.87-3.00 [1
H, m, C(6)H
B], 3.40-3.53 [1 H,
br m, C(2)H], 9.19 [1
H, br s, NH
A], 9.49
(1 H, br s, NHB].
<A NAME="RD34409ST-16">16</A>
Munchof MJ.
Meyers AI.
J. Org. Chem.
1995,
60:
7084
<A NAME="RD34409ST-17">17</A>
Data for (
R
)-δ-Coniceine
Hydrochloride (37˙HCl)
Mp 175 ˚C; [α]D
²³ -1.5
(c 1.0 in EtOH). IR (KBr): νmax = 3477
(NH) cm-¹. ¹H NMR
(400 MHz, CD3OD): δ = 1.56-2.35 [10
H, m, C(1)H
2, C(2)H
2, C(6)H
2,
C(7)H
2, C(8)H
2], 2.92-3.22 [3
H, m, C(3)H
A, C(5)H
A, C(8a)H],
3.55-3.68 [2 H, m, C(3)H
B,
C(5)H
B]. ¹³C
NMR (125 MHz, CD3OD): δ = 20.5, 23.5,
24.4, 29.2, 29.5 [C(1), C(2), C(6), C(7), C(8)], 52.8,
53.6 [C(3), C(5)], 68.0 [C(8a)].
HRMS (ESI+): m/z (%) = 126
(100) [M + H]+. HRMS
(ESI+): m/z calcd
for C8H16N+ [M + H]+:
126.1283; found: 126.1278.
<A NAME="RD34409ST-18">18</A>
Yamazaki N.
Dokoshi W.
Kibayashi C.
Org
Lett.
2001,
3:
193
<A NAME="RD34409ST-19">19</A> Within this area, Monterrey et al.
have shown that alkylation of N-Cbz protected
piperidin-2-yl-acetates with ethyl bromo-acetate can lead
to successful ring closure by removal of the N-Cbz
protecting group in a tandem hydrogenolysis-hydrogenation
step to give the corresponding hexahydro-indolizin-3-one; see:
Monterrey IMG.
González-Muñiz R.
Herranz R.
Garcia-López MT.
Tetrahedron
1995,
51:
2729
The anti-configuration
of the alkylation was assigned on the basis of the established
preferential anti-alkylations of lithium β-amino
enolates, see:
<A NAME="RD34409ST-20A">20a</A>
Davies SG.
Walters
IAS.
J.
Chem. Soc., Perkin Trans. 1
1994,
1129
<A NAME="RD34409ST-20B">20b</A>
Ledoux S.
Célérier J.-P.
Lhommet G.
Tetrahedron Lett.
1999,
40:
9019
<A NAME="RD34409ST-21">21</A>
Data for (1
R
,8a
R
)-1-(Hydroxymethyl)octahydro-indolizine
(40)
[α]D
²³ -35.8
(c 0.50 in EtOH). ¹H
NMR (400 MHz, CDCl3): δ = 1.13-1.37
(2 H, m), 1.40-1.69 (3 H, m), 1.74-1.87 (4 H, m),
1.90-2.13 (3 H, m), 3.05-3.40 [2 H, m,
C(3)H
A, C(5)H
A], 3.46 [1
H, dd, J = 10.2, 2.4 Hz, C(1′)H
A], 3.86 [1
H, dd, J = 10.2, 2.8 Hz, C(1′)H
B], 3.95 (1 H, br
s, OH). ¹³C NMR (100 MHz, CDCl3): δ = 24.1,
25.3, 25.4, 26.7 [C(2), C(6), C(7), C(8)], 41.0 [C(1)],
53.6, 53.9 [C(3), C(5)], 64.6 [C(1′)], 66.2 [C(8a)].
HRMS (ESI+): m/z (%) = 156 [M + H]+.
Both diastereomers of 1-(hydroxymethyl)octahydro-indolizidine
(40) have previously been reported, see:
<A NAME="RD34409ST-22A">22a</A>
Nagao Y.
Dai W.
Ochiai M.
Tsukagoshi S.
Fujitalc E.
J. Org.
Chem.
1990,
55:
1148
<A NAME="RD34409ST-22B">22b</A>
Pandey G.
Lakshmaiah G.
Gadre SM.
Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1996,
35:
91
<A NAME="RD34409ST-22C">22c</A>
Bertrand S.
Hoffmann N.
Pete J.
Eur.
J. Org. Chem.
2000,
2227
<A NAME="RD34409ST-23">23</A>
Some discrepancies exist between the
reported characteri-sation data for 40 and
its epimer; these will be highlighted in a forthcoming publication
from this laboratory. However, our synthesis unambiguously confirms
the relative and absolute configuration of 40.